Rappe

Les spectres d’émission et d’absorption des atomes montrent des séries de lignes étroites et situées a des
longueurs d’onde décrites par des lois mathématiques empiriques simples.

Les premiers modeles atomiques, en particulier les modeles de Thomson et de Rutherford, ne pouvaient pas
expliquer cette quantification des spectres atomiques.

En 1913 Niels Bohr a introduit un modele atomique «semi-classique» qui pour la premiere fois expligue,
qualitativement et quantitativement, les spectres atomiques.

Dans le modele de Bohr de I'atome d’hydrogene I'électron parcourt une trajectoire circulaire autour du
noyau. Bohr postule que le moment cinétique associé a ces orbites est quantifié, et que le quantum de
moment cinétique est donné par la constante de Planck. On peut justifier cette hypothése avec la remarque
que ainsi les orbites sont composées d’'un nombre entier de longueurs d’'onde de de Broglie.

Avec cette hypothese on arrive a expliquer avec précision les séries spectrales de Balmer, Lyman, Paschen et
Brackett. On arrive aussi a calculer avec grande précision I'énergie de ionisation de I'atome.

La théorie de Bohr présente encore des difficultés. Elle ne décrit pas aussi bien les atomes a plusieurs
électrons. Elle n‘arrive pas non plus a décrire la structure fine des spectres, qui était observée dans les
mesures les plus récentes. Aussi, I’hypothese de la quantification du moment cinétique reste une hypothese
assez arbitraire.



Cours 10

'atome d’hydrogene d’apres la Physique Quantique



'atome d’hydrogene: Force centrale

L'équation de Schrodinger décrit correctement les états propres et les valeurs propres de I'énergie de I'atome
d’hydrogene. C’était un des plus grands succes de la Physique Quantique.

'atome d’hydrogéne est un probleme a deux corps, un électron et un proton, soumis a lattraction
électrostatique mutuelle. Ce probleme, en physique classique, peut étre exprimé exactement sous la forme d’un
probleme d’une seule particule soumise a une force d’attraction vers un point fixe de I'espace.

Le probleme est donc celui d’un électron de masse m, soumis a une force de magnitude
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qui est dirigée vers le centre d’attraction (le proton). Ici le vecteur r indique la position de I'électron relativement
au proton, et 7 = |r| = \/x2 4 y2 + 22

Cette force correspond a un potentiel
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Il faut faire attention au fait que la masse m a utiliser dans cette formulation du probleme, est la «masse
réduite» m=m.m_/(m.+m_). Etant donné la grande différence entre les masses de proton et électron, cette
masse est presque égale a la masse de I'électron m,



L'atome d’hydrogene: |'équation de Schrodinger

L'électron est donc décrit par I'équation de Schrodinger suivante
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ou Y(x,y, z) estla fonction d’onde définie dans I'espace cartésien 3 trois
dimensions.

Cette équation admet des solutions analytiques (c.-a-d. qu’on peut les
écrire sur une feuille de papier, sans passer par des calculs numériques a
I'ordinateur). Cependant, nous n’allons pas la résoudre mais seulement
discuter les solutions.

Il est convenable d’exprimer I'équation en coordonnées sphériques, ou un
point de I'espace est décrit par la longueur du vecteur et par deux angles,

comme illustré ici

(. y, 2) = P(r,0,9)




L'atome d’hydrogene: |'équation de Schrodinger

On peut montrer que I'équation de Schrodinger pour 'atome d’hydrogene peut étre résolue par séparation des
variables. Cela veut dire que la solution prend, sans perte de généralité, la forme

p(r,0,¢) = R(r)f(0)g(¢)

Ici r>0. En plus de la continuité des fonctions et des dérivées premieres, il faut que R(r) ait un comportement en
r=0 et r qui tend vers l'infini, qui garantit que la norme est finie.

Il faut aussi que g(¢)=g(p+2m), car une fonction ne peut pas prendre deux valeurs différentes pour la méme
valeur de la variable indépendante.

Puisque le potentiel U(r) ne dépend que de r, on arrive a séparer les équations pour f et g. Ces équations sont
indépendantes de U(r) et les solutions sont les mémes pour tout probleme avec un potentiel de la forme U(r).



L'atome d’hydrogene: |'équation de Schrodinger

On peut montrer que les états propres sont caractérisés par trois nombres quantiques

Unim (1,0, 0) = Rpi(7) fni(0)gm (@)

n: nombre quantique principal n=1,2,3,...
[: nombre quantique orbital [=0,1,2,... ,n—1
m: nombre quantique orbital magnétique m = —|, —[+1,...,0,...,1—1,1

Les valeurs propres de I'énergie qu’on obtient de la solution de I'équation, ne dépendent que de n
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Ce résultat reproduit exactement celui qu’on obtient du modele de Bohr.



L'atome d’hydrogene: |'équation de Schrodinger

Unim (7,0, 9) = Rui(7) fr1(0) gm (@)

n: nombre quantique principal n=1,23,...
I: nombre quantique orbital [=0,1,2,...,n—1
m: nombre quantique orbital magnétique m= -, =l +1,...,0,..., 1 —1,1

Les deux autres nombres quantiques sont liés au moment cinétique.

Les nombres gquantiques n et [ indiqguent respectivement la «couche» et la «sous-couche» électronique.
Historiguement, ils sont souvent indiqués par des lettres

n Shell Symbol { Subshell Symbol
1 K 0 S
2 L 1 h
3 M 2 d
4 N 3 f
5 O 4 g
6 P 5 h



['atome d’hydrogene: |a fonction d’onde

'état fondamental, avec n=1 et |=m=0, est caractérisé par une fonction d’onde qui ne dépend pas de 0 et ¢

1
77010()(7‘9 97 ¢) — —6—7“/&0

La forme de cette fonction est donc sphérique. La probabilité de trouver I'électron ne dépend donc que de Ia
distance du noyau. On peut calculer cette probabilité en tenant compte de I'expression du volume infinitésimal
d’une couche sphérigue

P(r)dr = [¢|*dV = |y |*4rrdr

r



['atome d’hydrogene: |a fonction d’onde

Pour 'état fondamental, la probabilité P(r) est
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Le maximum de probabilité se trouve a une distance correspondante au rayon de Bohr

Bien évidemment, I’électron est décrit par une densité de probabilité qui forme un nuage autour de I'atome.
Ceci est en contraste avec les trajectoires circulaires postulées dans les modeles de Rutherford et de Bohr.



['atome d’hydrogene: |a fonction d’onde

La fonction d’onde du deuxieme état de plus basse énergie, I'état avec
n=2 et I=m=0, est aussi indépendante de O et ¢. Elle a aussi donc une
forme sphérique
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La densité de probabilité correspondante est

1 3 r 2
P I 2 9 _ —7/ao
I

Cet état a une énergie E,=-(13.606/4) eV. La probabilité P(r) a deux
maxima. Le deuxieme correspond a la distance de probabilité maximale,
qui vaut environ r=5a,. Donc I'état 2s est environ 5 fois plus grand que
I'état 1s.
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'atomes d’hydrogene: les orbitales

On écrit les états de l'atome d’hydrogene
toujours dans la forme

77bnlm (7“, 97 ¢) . Rnl (T)}/}m (97 ¢)

Les fonctions Y;"*(6, ¢) sont les «kharmoniques
sphériques».

On a vu que, si le potentiel est de la forme U(r),
c.-a-d. indépendant de 6 et ¢, on peut alors
séparer [|'équation différentielle. La partie
«angulaire» admet toujours des solutions
données par les harmoniques sphériques.

Les harmoniques sphériques expliquent ainsi la
forme des orbitales électroniques que nous
apprenons, souvent de facon empirique, dans
les cours de chimie.

m=-3 m=-2 m=-1 m=0 m=+1 m=+2 m=+3
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['atome d’hydrogene: le moment cinétique

Pour mieux comprendre les nombres quantiques | et m, il faut introduire le moment cinétique de I’électron.

Le vecteur moment cinétique en physique classique est défini comme

L=rxp

(Yypz — 2Dy, 2Pz — TPz, TPy — YDz
= (Lazv Ly7 Lz)

Comme pour toutes les quantités physiques mesurables, en Physique Quantique le moment cinétique est associé
a des opérateurs. S'agissant d’'un vecteur, donc de trois quantités scalaires, chaque composante est décrite par un

opérateur. La definition est la méme que ci-dessus, mais on remplagant x, y, z et p,,p,,p, avec les opérateurs qu’on
connait déja.



['atome d’hydrogene: le moment cinétique

Il s’avere que les états propres de I'atome d’hydrogéne, sont aussi états propres «du moment cinétique».

Ce fait a un lien profond avec lI'invariance du probléme sous les rotations dans l’'espace: Les propriétés de 'atome
d’hydrogene ne changent pas selon comment I'atome est tourné vis-a-vis de l'observateur.

On rappelle que, selon la théorie de la mesure, si un état est état propre d’'une observable A, avec valeur propre g,
alors une mesure de A donnera la valeur a avec certitude. Autrement dit, I'incertitude sur la mesure de
I'observable A sur cet état est zéro.

Les états propres de I'atome d’hydrogene, en particulier, sont aussi états propres des opérateurs:
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On a en particulier que
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['atome d’hydrogene: le moment cinétique

Sion mesure L? ou L, surun état propre de 'atome d’hydrogéne, on obtiendra comme résultat de la mesure la
valeur propre correspondante avec certitude.

Puisque [, = v/ L2, la valeur mesurée du moment cinétique total sera L = hy/I(l + 1)
On voit que, pour les états avec /=0, la mesure du moment cinétique donnera L=0.

On vient de découvrir la premiere différence entre les prévisions du modele de Bohr et celles de I'équation de
Schrodinger pour I'atome d’hydrogene.

Selon le modéle de Bohr, le moment cinétique est quantifié selon L =nh n=1,2,3, ...
La plus petite valeur de L gu’on peut mesurer selon le modele de Bohrestdonc [, = h

Selon le résultat plus correct, donné par I'équation de Schrodinger, les états avec /=0 vont donner L=0 comme
résultat de la mesure.

Ces états ont une symétrie sphérique, c.-a-d. ils sont invariants sous rotations. La facon dont la fonction d’onde est
définie dans I'espace est telle que la vitesse de I’électron n’a pas une direction privilégiée. C’est pourquoi ils sont
caractérisés par un moment cinétique nul.

Dans le modele de Bohr, toutes les orbites par contre sont caractérisées par une vitesse bien définie de I'électron,
qui suit une trajectoire circulaire. C’est ce modele fait la prévision erronée que le plus petit moment cinétique
mesurable est non nul.



['atome d’hydrogene: le moment cinétique

A

'observable L, est la composante du moment cinétique selon 'axe z.
Si L, # 0 Celaveut dire que la rotation de I'électron a lieu, au moins partiellement, autour de l'axe z.
Physiquement, c’est comme si on avait un courant électrique dans une boucle circulaire.

Un courant électrique en boucle produit un moment magnétique u (c.-a-d. une aimantation) orthogonal a Ia
boucle, donc avec une composante parallele a I'axe z.

Par exemple, pour /=1 on a trois états possibles, respectivement avec
m=—1,0, 1
L,

hm = —h, 0, +h

Ces trois états ont donc trois valeurs différentes du moment magnétique autour de I'axe z



'atome d’hydrogene: l'effet Zeman

On sait qu’un moment magnétique 1, soumis a un champ magnétique uniforme B, est caractérisé par une énergie

UB — — - B
Si on choisit le champ magnétique externe dans la direction parallele a I'axe z, on s’attend a que les trois états avec
m=-1, 0, +1 acquierent trois énergies différentes.

En faisant la mesure du spectre d’émission de 'atome d’hydrogene soumis a un champ magnétigue externe, on a
effectivement observé ce phénomene

, . ’ No magnetic Magnetic field
Il s’agit de l'effet Zeman field present
. . \ mpy = 1
Cet effet est une confirmation du modele ¢ =1 — my = 0
’ ’ X T D my = —1
de I'atome d’hydrogene décrit par Mo =) — B LAS
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'atome d’hydrogene: le «spin» de 'électron

Les mesures du spectre de l'atome d’hydrogene ont aussi montré une
caractéristigue qui n’est pas prévue par I'équation de Schrodinger. Les états avec
I=0 sont caractérisés par deux lignes spectrales trés proches en longueur
d’onde. On a appelé cette caractéristique un «doublet».

L'équation de Schrodinger ne permet pas d’expliquer l'origine de ce doublet, car
pour /=0 on s’attend seul |'état avec m=0.

Les travaux de Wolfgang Pauli, Samuel Goudsmit et George Uhlenbeck ont mené /
a I'introduction d’un quatrieme nombre quantique, appelé «spin».

Lorigine physique du spin est assez profonde. Une image classique tres 8 &
simplifiée (et en bonne partie fausse) donne quand-méme une intuition sur le
mécanisme a la base du spin. /

On peut s'imaginer |'électron comme une sphere dont la surface est chargée. Si
cette sphere tourne sur son axe (c.-a-d. elle a un «spin»), alors elle génere un
moment magnétique associé a cette rotation.

La composante du spin dans la direction z ne peut prendre que deux valeurs,
appelés «spin up» et «spin down», qui valent —h/2, + h/2

Paul Dirac introduit en 1927 I'’équation d’onde relativiste. Le spin est un élément
essentiel de cette extension de la Physique Quantique.



'atome d’hydrogene: le «spin» de 'électron

A partir de 1921, Otto Stern et Walter Gerlach effectueront une série d’expériences ou des atomes chargés sont
envoyés a travers d’'un champ magnétique non-uniforme. Le gradient de champ génere une force sur un moment
magnétique qui se déplace dans |'espace. Le faisceau d’atomes est par conséquent détourné, d’'un angle
proportionnel a la composante du moment magnétique parallele au champ.

Le résultat est que seuls deux angles

A beam of silver atoms is The shapes of the pole

opposés sont mesurés. Chaque angle split in two by a nonuniform faces create a nonuniform
correspond a une valeur de la composante magnetic field. magnetic field.
du moment magnétique de I'atome.
On a ainsi démontré l'existence du spin.
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classical analysis



Questions ouvertes

Comment décrire les atomes a plusieurs électrons? Peut-on résoudre I'équation de Schrodinger aisément
dans ces cas?

Comment peut-on expliquer la structure de la table périodique des éléments?
Comment expliquer la facon dont les atomes se lient a former des molécules et des solides?

Y a-t-il quelque chose que l'équation de Schrodinger, plus le phénomene du spin, ne sont pas capable
d’expliquer, dans le domaine de la physique atomique et moléculaire?
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